skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rieders, Nathaniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wide-bandgap semiconductors have unique electron emission properties by virtue of having high-lying conduction bands. Among these, diamond stands out because of its chemical stability, allowing it to serve as a solid-state electron source in vacuum and non-vacuum environments, including water. However, the underlying mechanisms of electron emission are not well understood. Here, we report investigations of the mechanisms of electron emission from H-terminated and oxidized surfaces of single-crystal boron-doped diamond(111) in vacuum and in water using both sub-bandgap (4.75 eV and 3.05 eV) and above-bandgap (21.2 eV) excitation. Energy-resolved photoemission spectra in vacuum using different incident photon energies reveal two distinct energy distributions, reflecting different emission pathways. While oxidation greatly reduces electron emission into vacuum using both sub-bandgap and above-bandgap sources, facile electron emission into water persists on the oxidized samples using sub-bandgap excitation and is directly observed through transient optical absorption measurements using sub-bandgap excitation. Low-energy inverse photoemission spectroscopy shows that oxidation leads to broad distribution of surface states throughout the diamond bandgap. Our studies highlight 
    more » « less
    Free, publicly-accessible full text available January 21, 2026